
Monday Trade
Advancing the Future of Open Finance

June 24, 2025

1 Introduction

Monday Trade is a decentralized exchange protocol engineered for high-throughput,
low-latency trading in fully onchain environments. It features a hybrid execu-
tion model that integrates discrete order book logic with range-based AMM
liquidity, allowing for precise capital allocation and efficient price formation.

Central to the system is a dual tick architecture: fine-grained order ticks
enable discrete limit order placement, while coarser swap ticks aggregate order
flow and organize liquidity movement. This tick hierarchy empowers liquidity
providers with granular control while maintaining gas efficiency at scale.

A key innovation in Monday Trade is the lazy crossing mechanism, a novel
execution strategy that defers computation and storage writes during tick traver-
sal. Rather than eagerly updating every crossed order tick during a swap, the
system delays those updates until new state changes are triggered (e.g., by or-
der placement or withdrawal). This significantly reduces gas overhead without
sacrificing correctness or execution determinism, enabling practical support for
high-resolution price grids.

The protocol modularizes execution into isolated components: order handler,
swap engine, and liquidity manager. Each of these is equipped with nonce-
tracking and state reconciliation logic to ensure safety and consistency across
asynchronous interactions. Combined with a tick-aligned nonce system, this
architecture enforces predictable order settlement, enables cross-tick accounting,
and preserves economic soundness even under adversarial conditions.

Building upon Uniswap V3’s (Adams et al., 2021) liquidity primitives, Mon-
day Trade maintains tight synchronization between AMM pricing and order
book boundaries, preserving arbitrage bounds and enabling robust execution
in fast-moving markets. Its extensible core design provides a foundation for
advanced financial primitives without compromising performance or decentral-
ization.

2 Architecture

The main architecture of Monday Trade is in Figure 1.

1



Storage

Tick system

Swap handler

swap (Algorithm 1)

Liquidity handler

Reuse Uniswap V3 to
manage AMM liquidity
between swap ticks.

Order handler

Nonce system,
place (Algorithm 2),

withdraw (Algorithm 3),
and cancel() of order

Figure 1: Architecture

The storage is inherited from Uniswap V3. The tick system consists of two
sets of ticks: order tick and swap ticks. The tick spacing of order tick is denser
than that of swap tick. The swap tick inherits its functionality from Uniswap
V3 and it manages order ticks. The liquidity handler reuses Uniswap V3 to
manage the range liquidity, for example the calculation of the active liquidity
(Definition 6). The swap handler implements the lazy crossing algorithm (Al-
gorithm 1), which is a gas-efficient way to fill orders. This helps to support
finer order tick size while maintaining the gas consumption low. The order han-
dler manages the placement, withdrawal, and cancellation of orders. Its nonce
system works together with the swap handler to keep track of what orders are
filled. Moreover, the nonce system defines which orders are withdrawable or
cancelable.

The organization of this paper is as follows. We introduce the tick system
in Section 3, liquidity handler in Section 4, the swap handler in Section 5, and
the order handler in Section 6.

3 Tick system

Let P = (0,∞) be the price axis of the price of token X in token Y. Let
z < z ∈ Z, the set of integers.

Definition 1 (Order tick). The order tick system with the spacing parameter
m ∈ N+ is a map

Tm : [z, z] ∩mZ→ P

i 7→ 1.0001i

The domain of Tm is called the order ticks.

If an LP places an order consisting of token X/Y at the order tick i/j, he is
willing to sell/buy X at the price Tm(i)/Tm(j). It follows that

Orders consisting of X must lie to the right of that of Y, i.e. j < i,

2



as orders violating it would have been filled. Let

I := min{i | orders on i consist of token X only},
J := max{j | orders on j consist of token Y only}.

Note that J < I.

Definition 2 (Bid/ask price). The bid/ask price pb/pa of token X is defined as
Tm(J)/Tm(I).

The order tick system supports the following functions to keep track of orders
on each tick.

Definition 3.

x : [z, z] ∩mZ→ [0,∞)

i 7→ total amount of X token placed on i

need y : [z, z] ∩mZ→ [0,∞)

i 7→ Tm(i)x(i)

y : [z, z] ∩mZ→ [0,∞)

i 7→ total amount of Y token placed on i

need x : [z, z] ∩mZ→ [0,∞)

i 7→ y(i)

Tm(i)

A denser order tick spacing, i.e. smaller m, provides fine control for LPs.
However, the gas consumption for a trade that crosses many order ticks will be
high. To improve gas efficiency, we introduce the swap tick system, which is
another tick system with a coarser spacing.

Definition 4 (Swap tick). Let Tm be an order tick system. The swap tick
system with the spacing parameter n > m associated with Tm is a map Sn :
[z, z] ∩ nZ→ P defined as follows.

Sn := Tn.

The domain of Sn is called the swap ticks.

Remark. Any swap tick i that is a multiple of lcm(m,n) is also an order tick.
In particular, if m|n, each swap tick is an order tick.

Figure 2: Swap tick system Sn with n = 5m.

Every swap tick keeps track of the total orders placed on the order ticks
between it (inclusive) and the previous/next swap tick. It also keeps track of
the amount of token required to fill all the orders of which it keeps track.

3



Definition 5 (Swap tick bookkeeping functions without AMM liquidity). Let
i be the current swap tick.

order X : [z, z] ∩ nZ→ [0,∞)

i 7→
∑

i≤j<min{i+n,z+1}
m | j

x(j)

order need Y : [z, z] ∩ nZ→ [0,∞)

i 7→
∑

i≤j<min{i+n,z+1}
m | j

need y(j)

order Y : [z, z] ∩ nZ→ [0,∞)

i 7→
∑

max{i−n,z−1}<j≤i
m | j

y(j)

order need X : [z, z] ∩ nZ→ [0,∞)

i 7→
∑

max{i−n,z−1}<j≤i
m | j

need x(j).

Remark. order X(i) is the amount of X stored between [i, i+ n)

4 Liquidity handler

Any constant function AMM quotes a current price pc of X in Y by implicit
differentiation

pc = −
dy

dx
=

∂F/∂x

∂F/∂y
, (1)

where F (x, y) is the invariant curve. For concentrated liquidity AMM, Equa-
tion (1) holds true when applied to virtual reserves.

An AMM liquidity over price range (0,∞) contains both X and Y across
(0,∞), which seemingly contradicts our requirement in Section 3 that token X
lie to the right of token Y on the price axis. The following proposition resolves
this contradiction.

Proposition 1 (Jiang et al. (2025)). For an AMM with current price pc and
liquidity l over (0,∞), if a trade moves the price to p, then for any interval
(p1, p2) ∋ pc, p, l can be decomposed as three range liquidities with value l over
(0, p1), (p1, p2), and (p2,∞)1

For our purpose, we need the following corollary.

1l over (0, p1), (p1, p2), and (p2,∞) means
√
p1l amount of Y,

(√
1
pc

−
√

1
p2

)
l amount of

X and
(√

pc −
√
p1

)
l amount of Y, and

√
1
p2

l amount of X, respectively.

4



Corollary 1. An AMM liquidity l over (p1, p2) ∋ pc can be decomposed to l
over (p1, pc) and (pc, p2).

Proof. Let p→ pc in Proposition 1.

Corollary 1 says that a range liquidity containing the AMM current price pc
is equivalent to two range liquidities sitting next to pc such that the liquidity
to the left/right of pc contains only Y/X.

Because Monday Trade supports order tick

Theorem 1. If pc exists, then pb ≤ pc ≤ pa but the two equalities cannot hold
simultaneously.

Proof. Suppose that there is a background liquidity l over (0,∞) and an order

at pb consisting of y >
√

pb

pc
(
√
pb−
√
pc)l amount of Y. Suppose for contradiction

that pc < pb < pa. WLOG, suppose that there exists no other order nor range
liquidity in (pc, pb].

1. Use (
√
pb−
√
pc)l amount of Y to buy

√
pb−

√
pc√

pbpc
l amount of X. This pushes

the AMM price to pb.

2. Use
√
pb−

√
pc√

pbpc
l amount of X to buy Y. This fills the bid order at pb and we

obtain
√

pb

pc
(
√
pb −

√
pc)l amount of Y.

3. We have earned
(
√
pb−

√
pc)

2

√
pc

l amount of Y, an arbitrage.

Similarly we can show that pc ≤ pa.

Theorem 1 says that the current price of the AMM must lie between the bid
and ask prices of the order book. Otherwise there will be arbitrage opportunity
within the system.

In Definition 5, order X and order Y are defined as functions on the swap
tick and can be evaluated against any input. One might attempt to update
their definition to include range liquidity so that each swap tick keeps track of
the total amount of token needed to cross it. This is infeasible because if a
background full range liquidity is added, we need to update all swap ticks. To
efficiently manage both order and range liquidities, we require that

Range liquidity be placed between any two swap ticks.

This allows us to use the concept of active liquidity in Uniswap V3 to manage
AMM liquidity. Note that Proposition 1 implies that range liquidity is additive,
i.e. if there are l1 over (p1, p2) and l2 over (p3, p4), where p1 < p3 < p2 < p4,
then the liquidity amount in (p3, p2) is l1 + l2. This allows us to define the
following.

5



Definition 6 (Active liquidity). Let the current AMM price be pc and the
nearest two swap ticks to pc be i and i+ n. The current liquidity l is defined as
the sum

l :=
∑

l′ covers (Tn(i),Tn(i+n))

l′,

where l′ covers (Tn(i), Tn(i+n)) means the range of l′ contains (Tn(i), Tn(i+n)).
If the AMM current price doesn’t exist, l is defined to be 0.

Remark. Note that both i and l are functions of pc.

Definition 7. Let pc the current price, i and i+n be two nearest swap ticks to
pc, and l the current liquidity. The following two functions amm X, amm Y :
(0,∞) ∪ {∅} → [0,∞) are defined as follows

amm X(pc) :=

(√
1

pc
−

√
1

Tn(i+ n)

)
l,

amm Y (pc) :=
(√

pc −
√
Tn(i)

)
l

and

amm X(∅) := 0,

amm Y (∅) := 0.

Note that Definition 7 only defines the amount of token needed to cross the
swap ticks surrounding pc. Once these ticks are crossed, Uniswap V3 updates
the current liquidity l on the fly and in turn amm X and amm Y are correctly
re-calculated.

5 Swap handler

In this section, we introduce the following lazy tick crossing mechanism:

If a swap is to fill all the order ticks between two swap ticks, we only
update the information of these two swap ticks. The update of the
order ticks in between is postponed till new orders are placed on them
or tokens are withdrawn from them.

The detail for lazy tick crossing for buying token X is given in Algorithm 1 and
Figure 3. The procedure for Y is similar.

A crossing of a swap tick implies the crossing of all order ticks associated
with it, but only the swap tick is updated in lazy crossing. In Section 6, we
will use nonce to rectify this. For the gas saving effect of lazy crossing, consider
a swap starting from the tick i that crosses N consecutive order ticks without
lazy tick crossing, the actual tick crossing is∑

i≤j<i+mN
n | j

1 =

⌈
i+mN

n

⌉
−
⌈
i

n

⌉

6



Start

Can take all
liquidity in the
next swap tick?

Current
price on an
order tick?

Swap on curve
until next order
or swap fulfilled

Can fill all
orders on the
order tick?

Cross order tick

Swap fulfilled?
Fulfill the swap
using orders

Cross swap tick

Swap fulfilled?

Stop

No

Yes

Yes

No

Yes

No

No

Yes

Yes

No

Figure 3: Lazy tick crossing flowchart

7



Algorithm 1: Lazy tick crossing for buying X

Data: i: initial tick, t: input token amount
output← 0 ;
current tick ← i ;
if current tick is a swap tick then

next tick ← i ;
else

next tick ← next swap tick(current tick) ;
end
while t ≥ next tick.need Y do

output← output+ next tick.X ;
t← t− next tick.need Y ;
next tick.X ← 0 ;
next tick.need Y ← 0 ;
next tick.nonce x← next tick.nonce x+ 1 ;
current tick ← next tick ;
next tick ← next swap tick(current tick) ;

end
if t > 0 then

foreach i ∈ {current tick < i < next tick | m divides i} do
if t ≥ i.need y then

output← output+ i.x ;
t← t− i.need y ;
next tick.X ← next tick.X − i.x ;
next tick.need Y ← next tick.need Y − i.need y ;
i.x← 0;
i.need y ← 0 ;
i.nonce x← i.nonce x+ 1 ;

else
output← output+ t

Tm(i) ;

next tick.X ← next tick.X − t
Tm(i) ;

next tick.need Y ← next tick.need Y − t ;
i.x← i.x− t

Tm(i) ;

i.need y ← i.need y − t ;
break ;

end

end

end
return output

8



swap tick crossings plus ∑
max{i−1,⌊ i+mN−1

n ⌋n}<j<i+mN

m | j

1

=

 i
m +N −

⌊
⌊ i+mN−1

n ⌋n
m

⌋
− 1, i <

⌊
i+mN−1

n

⌋
n

N, otherwise

order tick crossings.
A concrete example is given below.

Example 1. Suppose m = 3, n = 300, i = 0, and N = 101. In this case,⌈
0 + 3× 101

300

⌉
−
⌈

0

300

⌉
= 2

swap ticks are crossed and

0

3
+ 101−

⌊⌊
0+3×101−1

300

⌋
× 300

3

⌋
− 1 = 0

order tick is crossed, a 98% save on tick crossing.

6 Order handler

We introduce the following nonce (Number used ONCE) system to maintain
the correctness of the system.

Definition 8 (Nonce). Each order and swap tick keeps track of two nonces:
nonce x and nonce y. If the tick i consists of token X and a swap depletes all
X on i, then i.nonce x is incremented by 1. Similarly for Y.

Since a crossing of a swap tick implies the crossing of all order ticks associated
with it, the nonce of the swap tick should not be larger than that of its associated
order ticks. However, lazy crossing (Algorithm 1) violates this as it only updates
swap tick’s nonce. We call it the nonce discrepancy.

Definition 9 (Nonce discrepancy). The system is said to be in nonce discrep-
ancy if there exists one swap tick whose nonce is larger than that of its associated
order ticks.

To rectify this, we update the nonces of the corresponding order ticks at the
time of order placement (Algorithm 2 and Figure 4).

The withdrawal mechanism (Algorithm 3 and Figure 5) implies the following
desired property.

Fully filled orders buying X/Y are withdrawable in X/Y.

9



Start

Nonce dis-
crepancy

(Definition 9)?

Update order
tick nonce

Place order,
update swap
tick reserve,

set user’s nonce

Stop

Yes

No

Figure 4: Order placement

10



Algorithm 2: Order placement

Data: i: tick to place order, t: token amount, placed x: True if the
input token is X

if nonce discrepancy then
update order tick’s nonce ;

end
if placed x then

i.x← i.x+ t ;
i.need y ← i.need y + Tm(i)t ;
if i is a swap tick then

i.X ← i.X + t ;
i.need Y ← i.need Y + Tm(i)t ;

else
next swap tick.X ← next swap tick.X + t ;
next swap tick.need Y ← next swap tick.need Y + Tm(i)t ;

end
user.nonce← i.nonce x ;

else
i.y ← i.y + t ;
i.need x← i.need x+ t

Tm(i) ;

if i is a swap tick then
i.Y ← i.Y + t ;
i.need X ← i.need X + t

Tm(i) ;

else
prev swap tick.Y ← prev swap tick.Y + t ;
prev swap tick.need X ← prev swap tick.need X + t

Tm(i) ;

end
user.nonce← i.nonce y ;

end

11



Start

tick has been
crossed?

Order filled,
withdraw all.

user’s size <
tick’s partially
filled size?

Stop

No

Yes

Yes

No

Figure 5: Order withdrawal

Algorithm 3: Withdrawal

Data: i: tick to withdraw from, t: deposited token amount, placed x:
True if the deposited token is X

if placed x then
if tick i has been crossed then

return Tm(i) · t amount of token Y ;
else if t < partially filled size then // tick is not crossed

but the order has been filled.

partially filled size← partially filled size− t ;
return Tm(i) · t amount of token Y ;

end

else
if tick i has been crossed then

return t
Tm(i) amount of token X ;

else if t < partially filled size then
partially filled size← partially filled size− t ;
return t

Tm(i) amount of token X ;

end

end

12



Indeed, for an order selling X placed at time t0 at tick i, the user’s nonce is set
to i.nonce x. If tick i or the swap tick managing it is crossed at time t1 > t0,
i.nonce x will be incremented and the Y token obtained will be stored in the
pool’s contract and the user can withdraw it at any time.

Order handler also supports order cancellation (Algorithm 4and Figure 6).
The relation between withdrawal of the cancellation is as follows:

1. Only fully filled orders can be withdrawn.

2. Partially filled or untouched orders can be canceled.

3. Sometimes, a fully filled order may also be canceled (Example 2).

Start

Tick has been
crossed or

the requested
amount is
too large?

Tick has
enough token?

Mark the tick
as crossed
Update the
swap tick

Return both
tokens.

Return re-
quested token.

Stop

Yes

No

No

Yes

Yes

Figure 6: Order cancellation

Example 2. User A placed 100 X at price 10, user B placed 100 X at the same
price. User C bought 100 X at this price. Now, A may choose to withdraw as

13



Algorithm 4: Cancellation

Data: i: tick to cancel at, t: amount to cancel, placed x: True if the
deposited token is X

if placed x then
if tick i has been crossed or tick size+ partial filled size < t then

return;
else if t ≤ tick size then// normal cancellation.

partially filled size← partially filled size− t ;
Update the corresponding swap tick ;
return t amount of token X ;

else // Cancellation of a partially filled order.

x← tick size ;
y ← (t− tick size) · Tm(i) ;
tick size← 0 ;
partially filled size← 0 ;
i.nonce x← i.nonce x+ 1 ; // mark the order tick as

filled as the remaining order is fully filled.

Update the corresponding swap tick ;
return x amount of token X and y amount of token Y ;

end

else
if tick i has been crossed or tick size+ partial filled size < t then

return;
else if t ≤ tick size then

partially filled size← partially filled size− t ;
Update the corresponding swap tick ;
return t amount of token Y ;

else
y ← tick size ;

x← t−tick size
Tm(i) ;

tick size← 0 ;
partially filled size← 0 ;
i.nonce y ← i.nonce y + 1 ;
Update the corresponding swap tick ;
return x amount of token X and y amount of token Y ;

end

end

14



his order is fully filled and he will obtain 1000 Y. A may also choose to cancel
his order and he will gets his 100 X back. This will make the tick crossed and
B can only withdraw, not cancel.

References

[1] H. Adams, N. Zinsmeister, M. Salem, R. Keefer, and D. Robinson. Uniswap
v3 Core. Tech. rep. Uniswap, 2021. url: https://app.uniswap.org/
whitepaper-v3.pdf.

[2] R. Jiang, L. Wen, Y. Cao, and Y. Ding. “Chasing price drains liquidity”. In:
Mathematical Research for Blockchain Economy. 6th International Confer-
ence MARBLE 2025, Athens, Greece. Ed. byW. Knottenbelt, S. Leonardos,
A. Goharshady, and P. Pardalos. Lecture Notes in Operations Research.
Springer, 2025.

15

https://app.uniswap.org/whitepaper-v3.pdf
https://app.uniswap.org/whitepaper-v3.pdf

	1 Introduction
	2 Architecture
	3 Tick system
	4 Liquidity handler
	5 Swap handler
	6 Order handler

