
On-chain routing

Synfutures team

March 27, 2025

Abstract

In this article, we propose a routing algorithm that finds the optimal
direct swapping between two tokens. Then we optimize the gas consump-
tion so that it can be run fully on-chain and supports large query amount.

1 Introduction

Routing algorithms examine fragmented liquidities across different exchanges to
search for the best swap path. Angeris et al. (2022) gives a satisfactory modeling
of this problem and uses a domain-specific optimization language Cvxpy (Dia-
mond and Boyd, 2016) to solve the model. However, the computing resource
on blockchain are limited and expensive optimization procedure may not be
feasible to run on-chain. Moreover, the modeling and solution in Angeris et al.
(2022) use the specific function forms of the trading functions of the automated
market makers (AMMs), which are not directly available on-chain. Off-chain
routing and on-chain execution introduce an inherent risk: The on-chain data
may have changed by the time of execution. Moreover, off-chain algorithms are
not trustless.

1inch, a leading DeFi aggregator protocol, published in its Github repository
(1inch, 2020) an on-chain routing algorithm, which models the routing problem
as a knapsack problem solved by dynamic programming (DP). To our best
knowledge, it is the only on-chain routing algorithm in the public domain. In
this article, we propose an on-chain routing algorithm (Algorithm 1) and show
that it outperforms the knapsack-based algorithm.

In Section 2, we formalize the routing problem and derive an optimality con-
dition (Proposition 1). In Section 3, we propose our algorithm and in Section 4,
we prove the convergence and give two examples of its diverse run time behav-
ior. In Section 5, we perform an experiment to show the gas saving achieved by
Algorithm 1.

2 Modeling

Denote by X/Y the token that we sell/buy.

1



Definition 1 (Trading function). Consider an AMM with the curve C(x, y) =
k, where k is some liquidity parameter. Define the AMM trading function Ex,y :
xin 7→ Ex,y(xin) as follows.

C(x+ xin, y − Ex,y(xin)) = k,

for x > 0.

Ex,y(xin) is the amount of Y obtained when selling xin amount of X in
the AMM with inventory level (x, y). For AMMs satisfying some mild condi-
tions (Schlegel et al., 2023), Ex,y are well-defined, non-negative, monotonically
increasing, and concave.

Definition 2 (Post-trade price). The post-trade price of X in Y is defined as
the derivative of the trading function, i.e.

E′
x,y(xin) := lim

∆x→0

Ex,y(xin +∆x)− Ex,y(xin)

∆x
.

The post-trade price of X in Y is the price quoted by the AMM in the state
(x+ xin, y − Ex,y(xin)).

Example 1. Consider the Uniswap v2 AMM with curve xy = k. The trading
function is given by

Ex,y(xin) = y − k

x+ xin
.

The post-trade price

E′
x,y(xin) =

k

(x+ xin)2
=

y − Ex,y(xin)

x+ xin

is the price of X in Y quoted by the Uniswap v2 AMM with inventory level
(x+ xin, y − Ex,y(xin)).

We omit the subscripts of the AMM state in the trading function and write
xin just as x. The problem is formulated as follows.

Problem. Given x amount of token X and N AMMs represented by their
trading function Ei, 1 ≤ i ≤ n,

maximize:

N∑
i=1

Ei(wix),

subject to: ω1, ω2, · · · , ωn > 0,

w1 + w2 + · · ·+ ωn = 1.

The scheme is illustrated in Figure 1 for N = 3.
Since Ei’s are concave, the above problem is convex and therefore numerous

numerical algorithms exist. However, it is infeasible to run optimization solvers
on-chain due to the gas constraint. Therefore, we explore the special sturcture
of the problem given by its constraints, which is summarized in the following
proposition.

2



E1

E2

E3

X Y

Figure 1: Multi exchanges one hop

Proposition 1 (Optimality condition). A first order condition for the problem
is: All exchanges with allocated X must share the same post-allocation price.

Proof. Consider two exchanges Ei and Ej and we assign wif to Ei and wjx to
Ej . Divert a small portion xdw from Ej to Ei and the change in the amount of
Y we obtain, when expanded to the first order, is

Ei((wi + dw)x)− Ei(wix) + Ej((wj − dw)x)− Ej(wjx)

=
[
E′

i(wix)− E′
j(wjx)

]
xdw.

If E′
i(wix) > E′

j(wix), then diverting some X from Ej to Ei increases the
amount of Y we obtain and vice versa. Hence, at the optimal allocation, we
must have

E′
i(wix) = E′

j(wix).

Below is an example showing that Proposition 1 indeed holds.

Example 2. Consider two exchanges

E1(x) = 2
√
x,

E2(x) = 3 ln(x+ 1).

Even both E1 and E2 are monotonic and concave, they still intersect in a non-
trivial way (Figure 2). Using the Karush-Kuhn-Tucker (KKT) condition, the
solution is

1. If 0 < x ≤ 1
9 ,

w1 = 1,

w2 = 0.

3



5 10 15 20 25

2

4

6

8

10

x

y
y = 2

√
x

y = 3 ln(x+ 1)

Figure 2: Trading functions for two exchanges

In this case, E2 is not allocated because even after allocating all X to E1,
E′

1(x) is still larger than E′
2(0) (E

′ is the price of X in Y , so a larger E′

means a cheaper Y ).

2. If x > 1
9 ,

w1x =

(√
4x+ 13− 3

2

)2

,

w2x = 3

(√
4x+ 13− 3

2

)
− 1,

and the post-trade prices are

E′
1(w1x) =

1
√
w1x

=
2√

4x+ 13− 3
,

E′
2(w2x) =

3

w2x+ 1
=

2√
4x+ 13− 3

,

in agreement with Proposition 1.

4



3 Algorithm design

Proposition 1 says that we can aggressively allocate X to the exchange with the
best post-allocate price1 and adjust the allocation according to the new best
post-allocation price.

We define some useful items.

Definition 3 (Allocation lists). The allocation list is defined as

A : i 7→
(

1

E′
i(xi)

, xi

)
,

where xi is the amount of X allocated to Ei.

Definition 4 (Donor and receiver). The donor/receiver is defined as

D := argmax
i
{A[i][0] | A[i][1] > 0},

R := argmin
i
{A[i][0]},

i.e. donor is the allocated exchange with the most expensive Y and receiver is
the exchange with the cheapest Y .

Definition 5 (Global error). The global error of an allocation A is defined as

e(A) := A[D][0]−A[R][0].

Definition 6 (Legitimate diversion). A diversion of amount d from the donor
D to the receiver R is called legitimate if after diversion,

A′[R][0] ≤ A′[D][0],

where A′ is the allocation list after the diversion.

Remark 1. We restrict to legitimate diversion to prevent from the scenario
where one exchange Ei diverts too much to another exchange Ej so that Ej

becomes the new donor and Ei becomes the new receiver. In the worst case, this
may lead to endless back-and-forth diversion between these two.

The result is given in Algorithm 1.

4 Analysis of algorithm

The convergence result is given by the following proposition.

Proposition 2. After a legitimate diversion, the global error decreases.

1If an exchange Ei is not allocated, its post-allocation price is E′
i(0).

5



Algorithm 1: Single-hop allocation

Data: E: list of exchanges, x:total amount to be allocated,ε:global
error tolerance

A ← initialize(E, x) ;
D,R← findDonor(A),findReceiver(A) ; // Definition 4

while e(A) ≥ εA[D][0] do
legitDiversion← findLegitDiversion(A, D,R) ;
pR ← getTradePrice(R,A[R][1] + legitDiversion) ;
pD ← getTradePrice(D,A[D][1]− legitDiversion) ;
A[R]← (pR,A[R][1] + legitDiversion) ;
A[D]← (pD,A[D][1]− legitDiversion) ;
D,R← findDonor(A),findReceiver(A) ;

end
return A ;

Proof. If the donor remains the same after a legitimate diversion, we have

max
i
{A′[i][0]} = A′[D][0] =

1

E′
D(xD − d)

<
1

E′
D(xD)

= A[D][0],

where the inequality is by the concavity of ED.
If a change of donor happened and the new donor becomes D′ ̸= D, since

the diversion was legitimate, we have D′ ̸= R. Hence, D′ corresponds to the
second most expensive Y in A. Hence,

max
i
{A′[i][0]} = A′[D′][0] = A[D′][0] ≤ A[D][0].

Similarly, we can show that

min
i
{A′[i][0]} > A[R][0].

Hence, e(A′) ≤ e(A).

Remark 2. If there are two exchanges, one having the same price as the donor
and the other having the same price as the receiver, then after a legitimate di-
version, the global error will stay the same. But even in this case, the allocation
result becomes better.

Proposition 2 implies that Algorithm 1 converges and each iteration improves
the result.

The complexity analysis of Algorithm 1 is difficult. We consider an example.

Example 3. Consider N exchanges, N being even. Suppose x = 1. Let m≪ 1
be a precision parameter so that mx is the smallest size of a diversion. The
first N

2 exchanges are exactly the same and the last N
2 exchanges are exactly the

same. And the last N
2 exchanges have worse price than the first N

2 .

6



1. After N
2 iterations, the first N

2 exchanges are allocated 2
N amount of X

each.

2. After
⌊
log 2

mN

⌋
times of halving the diversion, E1 diverts m amount of

X to EN
2 +1. Ei repeats this for EN

2 +i, 2 ≤ i ≤ N
2 . This amounts to

N
2

⌊
log 2

mN

⌋
operations.

3. At this moment, E1 becomes the donor and EN
2 +1 becomes the receiver

again. However, E1 is not able to find the amount of diversion. If E1

were to divert m amount of X, E1 would have diverted 2m amount of X
in Step 2. Hence, Algorithm 1 halts.

In this case, the query complexity of Algorithm 1 is Ω(N log 1
mN ). The above re-

quires m < 2
N . Hence, if 1

m = poly(N), the query complexity will be Ω(N logN).

Example 4. Same as Example 3.

1. After N
2 iterations, the first N

2 exchanges are allocated 2
N amount of X

each.

2. For 1 ≤ i ≤ N
2 , after

⌊
log 2

2
N
2

−1mN

⌋
times of halving the diversion, Ei

diverts 2
N
2 −1m amount of X to EN

2 +i.

3. Repeat 2 with halving times
⌊
log 2

2
N
2

−jmN

⌋
and the diversion amount 2,

2 ≤ j ≤ N
2 . Since a change of donor/receiver happens after each diversion,

the cache is always cleared. In total, Ei diverted
(
2

N
2 − 1

)
m amount of

X to EN
2 +i. We assume 1

m = exp(N) so the allocated amount of Ei is

always approximately 2
N .

For each Ei, the steps of operation is

N
2∑

j=1

log
2

2
N
2 −jmN

=
3

4
N − N2

8
+

N

2
log

1

mN
= Ω

(
N log

1

mN

)
.

Therefore the query complexity in this case is Ω(N2 log 1
mN ). If m = 1

N2
N
2
, the

complexity will be Ω(N3). Note that it is almost necessary that m = 1

N2
N
2

or

smaller because we need

2

N
−
(
2

N
2 − 1

)
m > m,

i.e. after diverting X, each donor has at least the minimal amount.

It is unclear if Example 3 is the worst case scenario when the precision pa-
rameter satisfies 1

m = poly(N) due to the complex behavior of Algorithm 1. For
example, it is possible that a donor becomes a receiver in some future iteration.

7



Therefore, the allocated amount for that donor is not monotonically decreas-
ing. However, both Examples 3 and 4 are extreme in the sense that to actually
encounter these cases, exchanges EN

2 +i have to suffer from large price impact.

Example 4 is even more extreme because m has to be exponentially small in
N . If, instead of having O(N) donors, there are only O(1) donors and each
diversion changes allocation meaningfully, the complexity will be O

(
log 1

m

)
.

5 Experiment

We compare the performance of our implementation of Algorithm 1 with our im-
plementation of the knapsack problem formulation, which is solved by dynamic
programming (DP).

The experiment was performed on the Base blockchain at block 26325854.
The liquidity sources used were 12 WETH/USDC pools across 7 AMMs (Ap-
pendix A).

In the DP approach, the input amount was divided into 10 parts each part
was queried against each pool, in total 120 queries. Then query result was the
input of the 0-1 knapsack problem and was solved by DP. This is the algorithm
in 1inch (2020).

The detailed experiment result is in Appendix B. According to Table 1,
Algorithm 1 outperforms DP in both WETH amount and gas consumption.
Moreover, the maximal supported query amount is 20 times larger (31,000,000
vs 1,500,000).

The gas consumption comparison is as follows.

Figure 3: Gas consumptions by DP and Algorithm 1

8



Figure 4: Gas consumption by DP / gas consumption by Algorithm 1

Figure 4 shows that Algorithm 1 saves gas up to 16 times compared to
the knapsack DP approach and the gas saving effect is more pronounced when
query amount is large. Since DP makes a fixed amount (120) of queries, it is
interesting that queries of large amount consume significantly more gas. This
is because in AMMs like Uniswap V3, a large query/trade may cause numerous
tick crossings and that contributes to higher gas cost.

6 Discussion

In this article, we proposed an on-chain routing algorithm (Algorithm 1) and
proved its convergence. We showed empirically that it outperforms the knapsack-
based solution with the maximal 16 times save on gas and 20 times larger in
maximum query amount. Further research on the complexity of Algorithm 1 is
needed since it was not clear to us what counts as the worst scenario.

References

[1] 1inch. 1inchProtocol. 2020. url: https://github.com/1inch/1inchProtocol/
blob/master/contracts/OneSplitBase.sol.

[2] G. Angeris, A. Evans, T. Chitra, and S. Boyd. “Optimal Routing for Con-
stant Function Market Makers”. In: Proceedings of the 23rd ACM Confer-
ence on Economics and Computation. EC ’22. Association for Computing
Machinery, 2022, pp. 115–128. doi: 10.1145/3490486.3538336.

9

https://github.com/1inch/1inchProtocol/blob/master/contracts/OneSplitBase.sol
https://github.com/1inch/1inchProtocol/blob/master/contracts/OneSplitBase.sol
https://doi.org/10.1145/3490486.3538336


[3] S. Diamond and S. Boyd. “Cvxpy: A python-embedded modeling language
for convex optimization”. In: The Journal of Machine Learning Research
17.1 (2016), pp. 2909–2913.

[4] J. Schlegel, M. Kwaśnicki, and A. Mamageishvili. “Axioms for Constant
Function Market Makers”. In: Proceedings of the 24th ACM Conference on
Economics and Computation. Association for Computing Machinery, 2023,
p. 1079. doi: 10.1145/3580507.3597720.

Appendices

A Pool information

1. Two pools in Pancake V3

• 0x72AB388E2E2F6FaceF59E3C3FA2C4E29011c2D38

• 0xB775272E537cc670C65DC852908aD47015244EaF

2. Four pools in Uniswap V3

• 0xb4CB800910B228ED3d0834cF79D697127BBB00e5

• 0xd0b53D9277642d899DF5C87A3966A349A798F224

• 0x6c561B446416E1A00E8E93E221854d6eA4171372

• 0x0b1C2DCbBfA744ebD3fC17fF1A96A1E1Eb4B2d69

3. One pool in Uniswap V2

• 0x88A43bbDF9D098eEC7bCEda4e2494615dfD9bB9C

4. One pool in Aerodrome SlipStream

• 0xb2cc224c1c9feE385f8ad6a55b4d94E92359DC59

5. One pool in Aerodrome

• 0xcDAC0d6c6C59727a65F871236188350531885C43

6. Two pools in Sushiswap v3

• 0x482Fe995c4a52bc79271aB29A53591363Ee30a89

• 0x57713F7716e0b0F65ec116912F834E49805480d2

7. One pool in Alien Base

• 0xB27f110571c96B8271d91ad42D33A391A75E6030

10

https://doi.org/10.1145/3580507.3597720


B Experiment result

The output WETH amount is kept to 4 digits. The WETH and Gas columns
are obtained by Algorithm 1. N/A means out of gas.

USDC WETH WETH (DP) Gas Gas (DP)

32,000,000 N/A N/A N/A N/A
31,000,000 11,150.5202 N/A 1,011,625,713 N/A
10,000,000 3,712.3658 N/A 310,765,982 N/A
9,000,000 3,342.4950 N/A 291,044,347 N/A
8,000,000 2,972.1640 N/A 264,565,520 N/A
7,000,000 2,601.5820 N/A 238,866,283 N/A
6,000,000 2,230.8192 N/A 213,991,116 N/A
5,000,000 1,859.7030 N/A 187,516,078 N/A
4,000,000 1,488.3185 N/A 149,340,518 N/A
3,000,000 1,116.6788 N/A 105,014,675 N/A
2,000,000 744.7289 N/A 83,254,978 N/A
1,600,000 595.8684 N/A 67,267,041 N/A
1,500,000 558.6465 558.6442 63,793,646 1,005,224,073
1,000,000 372.4976 372.4965 50,409,369 675,409,165
900,000 335.2598 335.2590 45,521,069 616,303,183
800,000 298.0194 298.0187 42,614,341 564,175,856
700,000 260.7763 260.7758 40,055,093 522,305,778
600,000 223.5305 223.5301 39,105,293 477,426,565
500,000 186.2819 186.2818 36,758,045 433,002,172
400,000 149.0313 149.0308 34,640,377 374,450,387
300,000 111.7777 111.7772 28,425,718 296,627,662
200,000 74.5211 74.5208 25,834,998 181,366,174
100,000 37.2620 37.2617 19,299,257 93,909,435
90,000 33.5359 33.5357 18,098,562 84,348,647
80,000 29.8098 29.8096 16,786,530 74,456,942
70,000 26.0837 26.0835 17,401,768 64,650,531
60,000 22.3576 22.3574 13,998,851 54,876,890
50,000 18.6314 18.6312 16,382,517 45,312,204
40,000 14.9052 14.9051 16,420,519 36,588,106
30,000 11.1790 11.1790 12,482,296 29,335,793
20,000 7.4528 7.4527 13,391,454 23,288,343
10,000 3.7265 3.7265 12,833,739 17,363,590
9,000 3.3539 3.3538 12,498,283 16,888,291
8,000 2.9812 2.9812 11,136,417 16,072,725
7,000 2.6086 2.6086 10,921,554 15,524,926
6,000 2.2360 2.2360 10,290,490 14,817,897
5,000 1.8634 1.8634 11,200,736 14,067,069
4,000 1.4907 1.4907 11,037,951 13,271,391
3,000 1.1181 1.1181 9,502,404 12,679,135
2,000 0.7454 0.7454 9,048,126 12,224,625

11



USDC WETH WETH (DP) Gas Gas (DP)
1,000 0.3727 0.3727 7,966,390 11,658,197
500 0.1864 0.1864 7,430,601 11,159,433

Table 1: Experiment result

12


	1 Introduction
	2 Modeling
	3 Algorithm design
	4 Analysis of algorithm
	5 Experiment
	6 Discussion
	Appendices
	A Pool information
	B Experiment result

